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Abstract

Objectives Lipopolysaccharide (LPS) has been shown to alter intestinal contractility.
Toll-like receptor 4 (TLR4), K+ channels and mitogen-activated protein kinases (MAPKs)
have been proposed to be involved in the mechanism of action of LPS. The aim of this study
was to determine the role of TLR4, K+ channels and MAPKs (p38, JNK and MEK1/2) in the
local effect of LPS on the acetylcholine (ACh)-induced contractions in rabbit small intestine
in vitro.
Methods Segments of rabbit duodenum were suspended in the direction of longitudinal or
circular smooth muscle fibres in a thermostatically controlled organ bath.
Key findings LPS (0.3 mg/ml) reduced the contractions induced by ACh (100 mm) in the
longitudinal and circular smooth muscle of the duodenum after 90 min of incubation.
Polymyxin (TLR4 inhibitor), SB203580 (p38 MAPK inhibitor), SP600125 (JNK1/2 inhibi-
tor) and U0126 (MEK1/2 inhibitor) antagonized the effects of the LPS on ACh-induced
contractions in duodenal smooth muscle. Incubation with the blockers of K+ channels, TEA,
apamin, charybdotoxin, iberiotoxin, glibenclamide or quinine, did not reverse the effect of
LPS on ACh-induced contractions.
Conclusions These results suggest that the effect of LPS on ACh-induced contractions in
the rabbit duodenum might be mediated by TLR4 and p38, JNK1/2 and MEK1/2 MAPKs.
Keywords gastrointestinal motility; K+ channels; LPS; MAPK; TLR4

Introduction

Lipopolysaccharide (LPS) is an endotoxin present in the cell wall of Gram-negative bacteria.
Many alterations associated with bacterial infections, such as fever, circulatory changes and
damage to numerous organs, including the central nervous system, heart, kidneys, lungs,
liver and gastrointestinal tract, are attributed to LPS.[1–4] LPS causes alterations in gas-
trointestinal motility both in vivo and in vitro.[5–9] Previous studies by our group[8] have
reported an inhibitory effect of LPS on acetylcholine (ACh)-evoked contractions in intesti-
nal segments. Alterations in gastrointestinal motility have been widely reported in response
to the systemic administration of the endotoxin.[10,11] However, the mechanism by which
local treatment with LPS alters intestinal motility needs further investigation.

The principal mechanism by which LPS is sensed is via an LPS-binding protein (LBP)–
LPS complex and then signalling through the toll-like receptor 4 (TLR4)–MD-2 complex.
However, other cell surface molecules also sense LPS; these include the macrophage
scavenger receptor CD11b/CD18 and ion channels.[12]

Recognition and defence systems against bacterial infections are distributed throughout
multicellular organisms. The mediation of cellular activation in response to LPS is known to
occur through TLR4, a member of the toll receptor family.[13] When LPS binds to TLR4,
multiple intracellular signalling pathways are activated, a process that is facilitated by two
adapter proteins (MD-2 and CD14) and activated by the mitogen-activated protein kinases
(MAPK).[12,14,15]

Protein kinases are key regulators of cell function that constitute one of the largest and
most functionally diverse gene families. MAPKs are a family of Ser/Thr protein kinases
widely conserved among eukaryotes and involved in many cellular programs such as cell
proliferation, cell differentiation, cell movement and cell death.[16] The most extensively
studied groups of vertebrate MAPKs to date are the extracellular signal-regulated kinase

Research Paper

JPP 2011, 63: 657–662
© 2011 The Authors
JPP © 2011 Royal
Pharmaceutical Society
Received March 19, 2010
Accepted January 18, 2011
DOI
10.1111/j.2042-7158.2011.01253.x
ISSN 0022-3573

Correspondence: M. Divina
Murillo, Departamento de
Farmacología y Fisiología.
Unidad de Fisiología, Facultad
de Veterinaria, Universidad de
Zaragoza, c/ Miguel Servet 177,
50013 Zaragoza, Spain.
E-mail: dmurillo@unizar.es

This work was presented, in
part, at the LXVII Congreso
Anual de la Sociedad Española
de Patología Digestiva (SEPD),
Sitges (Spain), June 2008 and
the 2nd Symposium on
Veterinary Sciences, Zaragoza
(Spain), October 2008.

657



(ERK1/2), Jun-N-terminal kinase (JNKs) and p38 kinases. An
abnormal activation of MAPK has been observed in patho-
logical circumstances such as cancer,[17] inflammatory bowel
disease[18,19] and sepsis.[10] Recently our group has proposed
that the inhibition of the intestinal contractility induced by
LPS is mediated by p38 and ERK MAPKs in rabbits treated
with endotoxin.[10,20]

Most excitable cells express several types of K+ channels.
In fact, a number of different K+ channels have been identified
in the smooth muscle cells of the gastrointestinal tract.[21] We
have previously described that Ca2+-activated K+ channels of
small and high conductance, HERG K+ channels and inward
rectifier K+ channels participate in the spontaneous contrac-
tion of rabbit small intestine.[22] However, it is unknown
whether potassium channels, Toll-like 4 receptors or MAPKs
participate in the local effects evoked by LPS in vitro on the
intestinal contractility.

The aims of this study were to determine whether the local
effects evoked by LPS in vitro on the ACh-induced contrac-
tions in rabbit small intestine are mediated: by (i) K+ channels,
(ii) Toll-like receptor 4 or (iii) MAPKs.

Materials and Methods

Drugs and solutions
The composition of the normal Krebs solution in mm was
as follows: NaCl 120, KCl 4.7, CaCl2 2.4, MgSO4 1.2,
NaHCO3 24.5, KH2PO4 1.0 and glucose 5.6, pH 7.4. ACh,
LPS (from Escherichia coli serotype 0111 : B4), polymyxin B
sulfate, tetraetylammonium chloride (TEA), apamin (AP),
charybdotoxin (ChTX), iberiotoxin (IbTX), glibenclamide
and quinine were purchased from Sigma (Madrid, Spain).
4-[5-(4-Fluorophenyl)-2-[4-(methylsulphonyl)phenyl]-1H-
imidazol-4-yl]pyridine hydrochloride (SB-203580), anthra
[1-9-cd]pyrazol-6(2H)-one (SP-600125) and 1,4-diamino-
2,3-dicyano-1,4-bis[2-aminophenylthio] butadiene (U-0126)
were acquired from Tocris (Madrid, Spain). SB-203580,
SP-600125, U-0126 and glibenclamide were dissolved in
dimethyl sulfoxide (DMSO). The solutions were diluted such
that the final concentration of DMSO was <0.1% (v/v). This
concentration of DMSO did not have effect on intestinal con-
tractility. Apamin was dissolved in acetic acid. All of the other
drugs were prepared in distilled water.

Animals
The handling, equipment used and sacrifice of animals
complied with European Council legislation 86/609/EEC con-
cerning experimental animal protection. All experimental
protocols were approved by the Ethics Committee of the
University of Zaragoza (Spain). Male New Zealand rabbits,
2–2.5 kg, were kept with standard rabbit fodder and free
access to water.

Muscle contractility studies
After 24 h of fasting, the rabbits were humanely killed by a
blow to the head. Pieces of rabbit duodenum were removed,
washed, freed from mesenteric attachment and cut into
smaller segments. Whole-thickness segments (10 mm long

and 5 mm wide) were suspended in the direction of the
longitudinal or circular smooth muscle fibres in a thermo-
statically controlled (37°C) organ bath (10 ml capacity) con-
taining Krebs solution and continuously gassed with 95%
O2–5% CO2. Each segment was connected to an isometric
force transducer (Pioden UF1; Graham Bell House, Canter-
bury, UK) and stretched passively to an initial tension of
20 mN. Signal output of the mechanical activity was ampli-
fied (The Mac Lab Bridge Amp; AD Instruments Inc.,
Milford, MA, USA) with a range of 2 mV, recorded on a
computer for later analysis using the Mac Lab System/8e
computer program (AD Instruments Inc., Milford, MA,
USA) and digitized at two samples per second per channel.
Before testing, segments were allowed to equilibrate in
Krebs solution for 45 min. During that time, the nutrient
solution was changed every 20 min.

Each experimental protocol was systematically performed
on eight segments of duodenum (4 longitudinal and 4 circular
muscle) taken from the same rabbit and repeated in three or
four different animals. Thus, each preparation served as its
own control. Segments that did not show spontaneous activity
were discarded.

After the equilibration period, we added ACh 100 mm to
the bath, and the evoked contractile response was considered
the control. To investigate the local effect of LPS on the
longitudinal and circular smooth muscle of rabbit duodenum,
the duodenum segments were then incubated for 90 min with
Krebs or LPS (0.3 mg/ml) and, afterwards, ACh 100 mm was
added to the bath. This second ACh response was compared
with the control and expressed as a percentage. We examined
the role of TLR4 and MAPKs in the LPS-induced effects
by means of polymyxin (36 mm, a TLR4 inhibitor) and
SB203580 (0.1 mm, a selective p38 inhibitor), SP600125
(0.1 mm, a selective JNK inhibitor) and U0126 (0.1 mm, a
selective MEK1/2 inhibitor). These agents were added to the
bath 15 min before incubation for 90 min with Krebs or LPS
(0.3 mg/ml). The same protocol was performed with DMSO
(SB203580, SP600125 and U0126 vehicle) to check that it
had no effect per se.

To determine the participation of the different types of
K+ channels in the LPS-induced effects on ACh-induced con-
tractions, we used different blockers of several K+ channels:
tetraetylammonium (5000 mm, a non-specific K+ channel
blocker), apamin (1 mm and 0.1 mm, a blocker of small-
conductance Ca2+-activated K+ channels), charybdotoxin
(0.01 mm, a selective blocker of intermediate- and large-
conductance Ca2+-activated K+ channels), iberiotoxin (0.1 mm,
a blocker of large-conductance Ca2+-activated K+ channels),
glibenclamide (0.1 mm, a blocker of ATP-sensitive K+ chan-
nels) and quinine (10 mm, a blocker of voltage-sensitive K+

channels). These substances were added to the bath 15 min
before the LPS (0.3 mg/ml) incubation for 90 min.

Data analysis and statistics
All of the intestinal segments included in the analyses showed
spontaneous contractions. The ACh motor responses (MR)
were measured as integrated mechanical activity (IMA) per
second, expressed as mN/s and normalized per square
millimetre of cross-sectional area (CSA, mm2) as follows:
MR = A1 - A0, where A is the integrated area per second per
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mm2 during either the first 3 min of response to ACh (A1) or
the spontaneous motility, 3 min before adding ACh (A0).[8]

The integrated area was calculated using a baseline of 0 mN.
CSA was determined for each muscle strip using the equation
CSA (mm2) = mass (mg) [length (mm)·density (mg/mm3)]-1,
where rabbit intestinal muscle density was assumed to be
1.05 mg/mm3; the length and mass (wet weight) of each
segment were measured upon completion of experiments.[23]

The results were expressed as a percentage of the ACh control
values (100%).

Results are expressed as mean � SEM. Comparisons
between means were made using one-way analysis of vari-
ance tests, and P-values were determined using the Scheffé
F-test. P < 0.05 was considered statistically significant.

Results

Effect of lipopolysaccharide on
acetylcholine-evoked contractions
ACh (100 mm) evoked contractions in the longitudinal and
circular smooth muscle of the rabbit duodenum; contractions
were not significantly modified after incubation with Krebs
for 90 min (Figure 1a) or DMSO. The ACh-evoked contrac-
tions were inhibited in the presence of LPS (0.3 mg/ml,
90 min) compared with Krebs (90 min) in longitudinal and
circular muscles (Figure 1b), as previously has been shown in
our laboratory.

Effects of TLR4 inhibitor on
acetylcholine-evoked contractions
Polymyxin (36 mm) added 15 min before endotoxin reversed
the inhibitory effect of LPS on the ACh contractions in both
longitudinal (Figures 1c and 2a) and circular muscle of rabbit
duodenum (Figure 2a). Some duodenum segments were incu-
bated with polymyxin, a TLR4 inhibitor, to check that it had no
effect per se on ACh-evoked contractions. The incubation with
polymyxin (36 mm) did not modify significantly the ACh-
evoked contractions with respect to Krebs in both longitudinal
(Figure 2a) and circular (Figure 2b) muscle of duodenum.

Role of K+ channels in the inhibitory effect
of lipopolysaccharide
The incubation with tetraetylammonium (5000 mm), apamin
(1 mm), charybdotoxin (0.01 mm), iberiotoxin (0.1 mm), glib-
enclamide (0.1 mm) and quinine (10 mm) did not reverse the
effect of LPS on ACh-induced contractions in both longitudi-
nal and circular muscle of the rabbit duodenum (Table 1).
Quinine does not produce per se effects on the ACh-induced
contractions in both longitudinal and circular muscle of the
duodenum (92 � 24, n = 8; 102 � 28, n = 8). Previously we
have described that the other K+ channels blockers do not
cause per se effects either.[24]

Role of MAPKs in the inhibitory effect
of lipopolysaccharide
SB203580 (0.1 mm), SP600125 (0.1 mm) and U0126 (0.1 mm)
added 15 min before endotoxin reversed the inhibitory effect

of LPS on the ACh contractions in both longitudinal and
circular muscle (Figures 1 and 2) of rabbit duodenum. Some
duodenum segments were incubated with the p38, JNK and
MEK1/2 inhibitors to check that they had no effect per se on
ACh-evoked contractions (protocol described in Materials
and Methods). The incubation with SB203580, SP600125 and
U0126 did not modify significantly the ACh-evoked contrac-
tions with respect to Krebs in both longitudinal (Figure 2a)
and circular (Figure 2b) muscle of the duodenum.

Discussion

Previous studies by our group[8] have reported a local inhibi-
tory effect of LPS on the ACh-evoked contractions when
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Figure 1 Effect of lipopolysaccharide (LPS) on duodenal contractility,
and influence of inhibitors of TLR4 or MAPKs. Effect of the incubation for
90 min with Krebs (control) or LPS (0.3 mg/ml) on contractions evoked by
acetylcholine (ACh, 100 mm) in longitudinal smooth muscle of rabbit
duodenum. Influence of polymyxin B (PMX, 36 mm), SB203580 (SB,
0.1 mm), SP600125 (SP, 0.1 mm) or U0126 (U, 0.1 mm) added 15 min
before the LPS (0.3 mg/ml).Arrowheads indicate addition of acetylcholine.
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rabbit intestinal segments were incubated with LPS in vitro.
The main finding of the present study is that TLR4 and
MAPKs but no K+ channels are involved in the local effect of
LPS on intestinal contractility.

LPS, as one of the most potent inducers of the immune
system, is recognized by a complex cascade of extracellular
‘pattern recognition receptors’, which chaperone the LPS
from the bacterial membrane to the transmembrane receptor
TLR4.[25] We have studied the role of TLR4 in the local effect
of LPS using the specific inhibitor polymyxin B sulfate. Our
results show that TLR4 is involved in the mechanism of action
of LPS on intestinal contractility. These results agree with
another study in which TLR4 deletion significantly prevented
intestinal muscle dysfunction in postoperative ileus.[26] TLR4-
deficient mice are hyporesponsive to LPS[27] and smooth
muscle, and the myenteric plexus cells of murine intestine
have revealed expression of TLR4 in LPS-treated animals,
showing a possible role of TLR4 in LPS-induced motility
disturbances.[28] However, less information about the role of
TLR4 in local treatment with LPS has been provided. The
study of different receptor antagonists represents an useful
tool for the treatment of gastrointestinal motility disorders.[29]

Various K+ channels participate in intestinal spontaneous
motility,[22] and different K+ channels have been involved in
LPS signalling.[30,31] The inhibition of LPS-induced cytokine
production by the nonspecific K+ channel blocker quinine
has been described, showing a role for K+ channels in LPS
signal transduction.[32] LPS treatment changes the density
of inwardly rectifying K+ channels,[33] and the activation of
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Figure 2 Effect of lipopolysaccharide (LPS) and inhibitors of TLR4 or MAPKs on duodenal contractility. Effect of the incubation for 90 min with
Krebs (control) or LPS (0.3 mg/ml) on contractions evoked by acetylcholine (ACh, 100 mm) in longitudinal (a) and circular (b) smooth muscle of rabbit
duodenum. Influence of polymyxin B (PMX, 36 mm), SB203580 (SB, 0.1 mm), SP600125 (SP, 0.1 mm) or U0126 (U, 0.1 mm) added 15 min before
Krebs or LPS (0.3 mg/ml). Data are expressed as a percentage of the response to ACh control values (100%). Columns are mean values, and vertical
bars indicate SEM. *P < 0.05, ***P < 0.001 vs Krebs. #P < 0.05, ##P < 0.01 vs LPS.

Table 1 Acetylcholine-induced contractions in longitudinal and circu-
lar smooth muscle of rabbit duodenum incubated for 90 min in Krebs
solution or lipopolysaccharide

Longitudinal muscle Circular muscle

KREBS 96.8 � 7.2 (11) 96.3 � 7.7 (10)
LPS 61.0 � 7.5 (9)* 64.6 � 5.7 (12)*
TEA + LPS 70.0 � 10.2 (8)* 65.6 � 12.9 (8)*
AP + LPS 31.6 � 10.9 (8)*** 69.5 � 8.4 (8)*
ChTX + LPS 51.6 � 8.8 (12)*** 61.3 � 6.0 (11)***
IbTX + LPS 26.5 � 6.5 (8)*** 36.9 � 7.3 (9)**
GB + LPS 52.1 � 7.8 (9)*** 60.0 � 10.6 (9)*
Qn + LPS 72.1 � 12.3 (12)** 76.0 � 8.3 (10)**

Effect of TEA (5000 mm), apamin (AP, 1 mm), charybdotoxin (ChTX,
0.01 mm), iberiotoxin (IbTX, 0.1 mm), glibenclamide (GB, 0.1 mm) or
quinine (Qn, 10 mm) added 15 min before lipopolysaccharide (LPS,
0.3 mg/ml). The values are the mean � SE. Data are expressed as a
percentage of response of acetylcholine (% of controls). The number
of segments is in parentheses. *P < 0.05, **P < 0.01, ***P < 0.001 vs.
Krebs.
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high-conductance Ca++-activated K+ channels by LPS in artery
smooth muscle cells and in human alveolar macrophages[32,34]

has been proposed. An abnormal activation of K+ channels
in vascular smooth muscle has been observed in animals
with endotoxic shock and it has been suggested that an
overproduction of nitric oxide causes the activation of large-
conductance Ca++-activated K+ channels and ATP-sensitive
K+ channels that contribute to endotoxin-mediated vascular
hyporeactivity.[35] Another study has shown that high-
conductance Ca++-dependent and voltage-dependent K+ chan-
nels are involved in transmembrane signal transduction in
macrophages as an early step and that the modulation of the
channel by endotoxin is strongly sensitive to the conformation
of lipid A. However apamin, a blocker of small-conductance
Ca++-activated K+ channels, does not inhibit cytokine produc-
tion.[36] Previously our group has described that K+ channel
blockers do not produce effects per se on the ACh-induced
contractions[24] and in this study quinine does not cause any
per se effect either. In the present work, we have observed that
the incubation with different blockers of K+ channels did not
reverse the effect of LPS on ACh-induced contractions. These
results suggest that the effects of LPS are not mediated by K+

channels.
One pathway of intracellular activation induced by LPS is

MAPKs.[12,25] In general, distinct stimuli activate mitogen-
activated and stress-activated kinase subgroups with distinct
cellular effects. Certain stimuli, such as LPS and TNF-a,
activate multiple MAPKs in their target cells.[37,38] With the
availability of specific kinase inhibitors, the importance of
individual pathways to cellular responses can be determined.
We used selective inhibitors of p38, JNK and MEK1/2 to
determine which of these pathways contributed to LPS-
induced intestinal disturbances. It has been reported that LPS
activates all three MAPKs.[39] We have previously described
that the inhibition of p38 MAPK improves intestinal distur-
bances induced in a rabbit endotoxaemia model[10] by intrave-
nous LPS, but further investigation of the role of MAPK in the
local effect of LPS is needed. In this study, the treatment with
specific MAPK inhibitors reversed the effect of LPS on intes-
tinal motility. This is in good agreement with other studies
where MAPK inhibitors restored altered intestinal transit in
burned rats[40] or the beneficial effect of antioxidants in the
LPS-induced motility disorders associated with a reduction in
MAPK activation.[11] In fact, antioxidants are being exten-
sively used to restore the altered muscle response although
sometimes they have effects per se on contractility.[41] MAPKs
seem to be an important focus for the therapy of various
diseases involving intestinal motility disorders such as inflam-
matory bowel disease[18] or postoperative ileus.[42]

We have previously studied the expression of some proin-
flammatory enzymes such as inducible nitric oxide synthase
(iNOS) and cyclooxygenase-2 (COX-2) in segments of
duodenum incubated with LPS, and we found that their
expression was not modified by LPS.[43] Nevertheless, COX-2
expression was modified in the duodenum of rabbits intrave-
nously treated with LPS.[44] According to these data, the LPS-
effects and the pathways involved change depending on
whether the administration of LPS is local or systemic. It has
been suggested that the K+ channels are activated by an LPS-
induced overproduction of nitric oxide (i.e. as a secondary or

even tertiary step of LPS signalling) and that they contribute
to the endotoxin-mediated damage.[35] We have observed that
iNOS and, consequently, nitric oxide production was not
increased in our model of local treatment with LPS[43] and
therefore these data agree with our results such that the K+

channels are not involved in the local effect of LPS.

Conclusions

In conclusion, our results show that the effect of LPS admin-
istered locally on ACh-induced contractions in the rabbit
duodenum might be mediated by TLR4 and p38, JNK1/2 and
MEK1/2 MAPKs. This study showed no evidence of a role of
K+ channels in the effect of LPS in the intestinal contractility
in vitro.
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